Predicting Translation Performance with Referential Translation Machines
نویسنده
چکیده
Referential translation machines achieve top performance in both bilingual and monolingual settings without accessing any task or domain specific information or resource. RTMs achieve the 3rd system results for German to English sentence-level prediction of translation quality and the 2nd system results according to root mean squared error. In addition to the new features about substring distances, punctuation tokens, character n-grams, and alignment crossings, and additional learning models, we average prediction scores from different models using weights based on their training performance for improved results.
منابع مشابه
Referential Translation Machines for Predicting Translation Quality and Related Statistics
We use referential translation machines (RTMs) for predicting translation performance. RTMs pioneer a language independent approach to all similarity tasks and remove the need to access any task or domain specific information or resource. We improve our RTM models with the ParFDA instance selection model (Biçici et al., 2015), with additional features for predicting the translation performance,...
متن کاملReferential Translation Machines for Predicting Translation Quality
We use referential translation machines (RTM) for quality estimation of translation outputs. RTMs are a computational model for identifying the translation acts between any two data sets with respect to interpretants selected in the same domain, which are effective when making monolingual and bilingual similarity judgments. RTMs achieve top performance in automatic, accurate, and language indep...
متن کاملRTM-DCU: Predicting Semantic Similarity with Referential Translation Machines
We use referential translation machines (RTMs) for predicting the semantic similarity of text. RTMs are a computational model effectively judging monolingual and bilingual similarity while identifying translation acts between any two data sets with respect to interpretants. RTMs pioneer a language independent approach to all similarity tasks and remove the need to access any task or domain spec...
متن کاملReferential Translation Machines for Predicting Translation Performance
Referential translation machines (RTMs) pioneer a language independent approach for predicting translation performance and to all similarity tasks with top performance in both bilingual and monolingual settings and remove the need to access any task or domain specific information or resource. RTMs achieve to become 1st in documentlevel, 4th system at sentence-level according to mean absolute er...
متن کاملRTM-DCU: Referential Translation Machines for Semantic Similarity
We use referential translation machines (RTMs) for predicting the semantic similarity of text. RTMs are a computational model for identifying the translation acts between any two data sets with respect to interpretants selected in the same domain, which are effective when making monolingual and bilingual similarity judgments. RTMs judge the quality or the semantic similarity of text by using re...
متن کامل